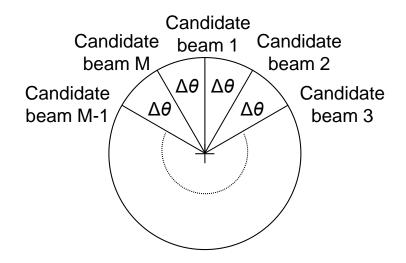
How the Choice of Beam Angles Affects the Dosimetry of OARs in IMRT of the Prostate

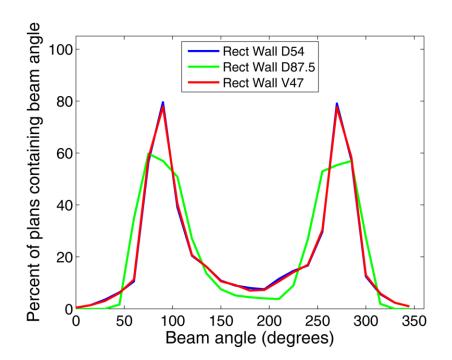

Spiridon V. Spirou, PhD spiridonspirou@yahoo.com

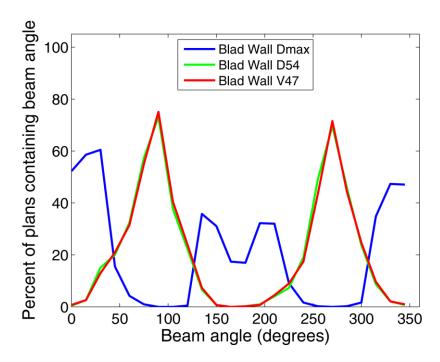
Introduction

- Despite the widespread use of IMRT for 20 years, the question of how beam directions affect the dosimetry and, therefore, which beam directions are optimal remains open.
- Many beam angle optimization algorithms have been proposed, but the results cannot be independently verified.
- In this work, a large number of prostate IMRT plans are calculated and the results are analyzed to determine how the choice of beam angles affects the doses received by OARs (rectum and bladder)

- Five prostate patients, previously treated to 86.4 Gy using a 5-beam IMRT plan were selected for this study.
- The patients were treated in the prone position
- For each patient, the clinical plan was used as the reference plan.
- For each patient, all the optimization constraints and parameters were kept fixed as in the clinical plan and only the beam angles were varied.

- M candidate equispaced coplanar beams were defined in 360°
- N plan beams were selected from the pool of M candidate beams and the plan was calculated
- All combinations of N plan beams out of M candidate beams were used.




Number of	Number of	Δθ	Number of
plan beams	candidate		plans per
(<i>N</i>)	beams (M)		patient
5	24	15°	42,504
6	20	18°	38,760
7	18	20°	31,824
8	18	20°	43,758
9	18	20°	48,620

- Additional constraints on the rectum (Rect_Wall) and bladder (Blad_Wall) were applied to bring forth differences in beam angle sets
- Plans were normalized so that Rect_Wall Dmax
 = 99%
- The best 1%, 2% and 5% of plans according to each OAR clinical dosimetric index were selected
- The frequency with which each beam angle appears in those best plans was calculated

Results

- Results are presented for 5-beam plans, where the choice of beam angles is more crucial
- Results are presented for the best 1% of plans.
 They are the same for the best 2% and 5% of plans

Conclusions

- Lateral beams are necessary to achieve low intermediate dose-volume endpoints
 - Rect_Wall D54, D87.5 and V47
 - Blad_Wall D54 and V47
- Posterior and anterior beams are necessary to achieve low Blad_Wall Dmax
- Optimal beam directions for low Rect_Wall Dmax are obscured due to normalization (Rect_Wall Dmax = 99%)